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TD n◦ 7 : Réduction des endomorphismes (1)

Exercice 1

Soient trois R-e.v. E,F,G de dimension finie et deux applications linéaires f ∈ L(E,F ), g ∈ L(F,G).
Montrer que :
1. Ker(g ◦ f) = Ker(f) ⇐⇒ Ker(g) + Im(f) est une somme directe.
2. Im(g ◦ f) = Im(g) ⇐⇒ Ker(g) + Im(f) = F .

Exercice 2

Soit E un R-ev de dimension finie et deux endomorphismes (u, v) ∈ L(E)2 qui commutent i.e. tels
que u ◦ v = v ◦ u.
1. Montrer que Im(u) et Ker(u) sont stables par v.
2. On suppose ici que E = Ker(u)⊕Ker(v). Montrer que Im(u) ⊂ Ker(v) et Im(v) ⊂ Ker(u).

Exercice 3

Soit V le sous-espace vectoriel de R3 donné par : V = {(a, a, 0) | a ∈ R}
1. Soient W1 = {(x, y, z) ∈ R3 | x = 2y − z} et W2 = {(x, y, z) ∈ R3 | x = 2y + z}. Montrer que W1 et
W2 sont deux supplémentaires de V dans R3.
2. Déterminer le projecteur p de R3 tel que Ker(p) = W1 et Im(p) = V , puis la symétrie s par rapport
à V de direction W1.

Exercice 4

Soient p et q deux projecteurs de Rn vérifiant p ◦ q = 0. On pose r = p+ q − q ◦ p.
1. Montrer que Im q ⊂ Ker(p).
2. Montrer que r est un projecteur.
3. Montrer que Ker(r) = Ker(p) ∩Ker(q) et Im(r) = Im(p)⊕ Im(q).

Exercice 5

Soient E un R-espace vectoriel de dimension finie et f, g ∈ L(E).
a) Montrer que si x est un vecteur propre de f et de g, alors x est un vecteur propre de f + g et de
f ◦ g.
b) Montrer que, si f ◦ g = g ◦ f et si λ ∈ Sp(f), le sous-espace propre de f associé à λ est stable par g.
c) Montrer que si f est nilpotent, alors 0 est la seule valeur propre de f .

Exercice 6

Soit E un R-espace vectoriel de dimension finie et p un projecteur de E.
Montrer que les seules valeurs propres possibles pour p sont 0 et 1. À quelle condition le sont-elles
effectivement ?

Exercice 7

Soit E un R-espace vectoriel de dimension n ⩾ 2 et soit s ∈ L(E) tel que s ◦ s = IdE avec s ̸= IdE et
s ̸= − IdE .
a) Montrer que les seules valeurs propres possibles de s sont 1 et -1.
b) Calculer (s− IdE) ◦ (s+ IdE) et montrer que 1 et -1 sont bien valeurs propres de s.
c) Montrer que E = Ker(s − IdE) ⊕ Ker(s + IdE). En déduire que s est diagonalisable et donner la
matrice de s dans une base formée de vecteurs propres de s.

Exercice 8

Déterminer les coefficients de A =

(
1 b c
1 b′ c′

1 b′′ c′′

)
∈ M3(R) sachant qu’elle admet pour vecteurs propres

V1 =

(
1
1
1

)
, V2 =

(
1
0
−1

)
et V3 =

(
1
−1
0

)
.

Exercice 9

Soit f ∈ L(R3) ayant pour matrice dans la base canonique : A =

(
0 3 3
−1 8 6
2 −14 −10

)
.

a) Calculer les valeurs propres de f .
b) Déterminer les sous-espaces propres de f et leurs dimensions.
c) f est-il diagonalisable ?



Exercice 10

Soit u l’endomorphisme de R3 défini par sa matrice A =

( 1
2 1 −1

2
0 1 0
−1

2 1 1
2

)
dans la base canonique.

a) Déterminer les valeurs propres et les sous-espaces propres de u.
b) Montrer que u est diagonalisable.
c) Déterminer u ◦ u. Conclusion ?

Exercice 11

Soit u un endomorphisme d’un R-espace vectoriel E de dimension finie tel que :
u3 − 3u2 + 2u = 0.

a) Montrer que les seules valeurs propres possibles de u sont 0,1 et 2.
b) Montrer que u est diagonalisable.

∼◀ Indications pour les exercices du TD n◦ 7 ▶∼

Ex. 1 : 1. (=⇒) : montrer que Ker(f) ∩ Im(f) = {0} ; (⇐=) : montrer que Ker(g ◦ f) ⊂ Ker(f) ; 2. (=⇒) :
utiliser g(y) = g(f(x)) pour décomposer y ; (⇐=) : montrer que Im(g) ⊂ Im(g ◦ f).
Ex. 2 : 1. vérifier que : ∀x ∈ Im(u) (resp. Ker(u)), v(x) ∈ Im(u) (resp. Ker(u)) ; 2. décomposer y = u(x) en
décomposant x grâce à la somme directe et utiliser 1. pour Ker v.
Ex. 3 : 1. chercher d’abord des bases de W1 et W2 ; 2. décomposer un vecteur (x, y, z) comme somme d’un
vecteur de W1 et d’un vecteur de V .
Ex. 4 : 1. ok ; 2. calculer r ◦ r ; 3. raisonner par double inclusion en utilisant les hypothèses sur p et q, et vérifier
que Im(p) ∩ Im(q) = {0}.
Ex. 5 : a) b) appliquer les définitions ; c) montrer que si f(x) = λx et fn = 0 alors λn = 0 ; puis montrer que
Ker(f) ̸= {0}.
Ex. 6 : utiliser p ◦ p = p puis E0 = Ker(p), E1 = Im(p).
Ex. 7 : a) s’inspirer de l’ex. 2 ; b) s + IdE et s − IdE ne peuvent pas être bijectifs ; c) s est une symétrie, en
déduire une base de E formée de vecteurs propres.
Ex. 8 : écrire AVi = λiVi puis résoudre.
Ex. 9 : a) chercher une réduite de Gauss de A− λI3 ; b) utiliser la réduite de Gauss obtenue en a) ; c) utiliser les
dimensions des sous-espaces propres.
Ex. 10 : a) b) idem ex. 3 ; c) utiliser la matrice diagonale semblable à A.
Ex. 11 : a) montrer que les valeurs propres λ vérifient λ3 − 3λ2 + 2λ = 0 ; b) montrer que E = E0 ⊕ E1 ⊕ E2.


