TD n° 4: Variables aléatoires discrètes (2)

Exercice 1

Soit X une variable aléatoire suivant une loi binomiale $\mathcal{B}(n,p)$ de paramètres $n \in \mathbb{N}^*$ et $p \in]0,1[$. Déterminer la loi et l'espérance de la variable $Y = \frac{1}{X+1}$.

Exercice 2

On lance un dé honnête et on s'arrête dès qu'on a obtenu un as pour la seconde fois. Soit X le numéro du lancer où on obtient le premier as et Y le nombre total de lancers. Déterminer la loi et l'espérance des variables X et Y.

Exercice 3

On considère une urne contenant initialement une boule blanche et une boule noire et on procède à l'expérience suivante : on effectue des tirages successifs d'une boule de cette urne et à chaque pas du tirage on replace dans l'urne la boule obtenue en ajoutant une boule supplémentaire de la même couleur.

On note X_n le nombre aléatoire de boules blanches obtenues au cours des n premiers tirages. Quelle est la loi de X_n ? (on commencera par les cas n = 1 et n = 2)

Exercice 4 (Ensae-Saclay 2021)

On lance une pièce équilibrée. Le jeu s'arrête dès lors qu'on a deux Piles successifs. On note X la variable aléatoire qui compte le nombre de lancers jusqu'à ce que le jeu s'arrête.

- 1. Donner $\mathbb{P}(X=2)$.
- 2. Montrer que pour $k \geqslant 3$, $\mathbb{P}(X = k) = \frac{1}{2}\mathbb{P}(X = k 1) + \frac{1}{4}\mathbb{P}(X = k 2)$.
- 3. En déduire la loi et l'espérance de X.

Exercice 5

Une pièce pipée donne pile avec une probabilité $\alpha \neq \frac{1}{2}$. Deux personnes A et B jouent avec cette pièce, elle est lancée 2 fois.

Si on obtient pile puis face, A a gagné, si on obtient face puis pile, B a gagné, sinon on relance la pièce 2 fois, etc.

- 1. Quelle est la probabilité que A gagne ? que B gagne ?
- 2. Soit T le nombre de lancers de la pièce jusqu'à l'obtention d'un gagnant. Donner la loi de T et son espérance.

Exercice 6

- a) On pose 20 questions à un candidat. Pour chaque question, k réponses sont proposées dont une seule est la bonne. Le candidat choisit au hasard une des réponses proposées. On lui attribue 1 point par bonne réponse. Soit X_1 le nombre de points obtenus. Quelle est la loi de X_1 ?
- b) Lorsque le candidat donne une mauvaise réponse, il peut choisir à nouveau une des autres réponses proposées. On lui attribue alors $\frac{1}{2}$ point par bonne réponse. Soit X_2 le nombre de points obtenus lors de ces seconds choix. Quelle est la loi de X_2 ?
- c) Soit X le total des points obtenus. Calculer $\mathbb{E}(X)$.
- d) Déterminer k pour que le candidat obtienne en moyenne une note de 5 sur 20.

Exercice 7

Soit $q \in]0,1[$ et soit X une variable aléatoire telle que $X(\Omega)=\mathbb{N}^*$ et :

$$\forall k \in \mathbb{N}^*, \ \mathbb{P}(X = k) = q\mathbb{P}(X \geqslant k).$$

Déterminer la loi de X puis calculer $\mathbb{E}(X)$ et V(X).

Exercice 8

On suppose que dans la mémoire d'un smartphone, le nombre de faux 0 (i.e. de bits qui devraient être égaux à 1) suit une loi de Poisson de paramètre λ_1 , et que le nombre de faux 1 (qui devraient être des 0) suit une loi de Poisson de paramètre λ_2 avec $\lambda_1 > \lambda_2$. On suppose aussi que ces deux phénomènes sont indépendants.

- 1. Quelle est la loi de la variable aléatoire égale au nombre total d'erreurs de bits?
- 2. Soit $n \in \mathbb{N}$. Sachant que n erreurs ont été commises, combien y a-t-il de faux 0?

- Ex. 1 : ok en utilisant $(n+1)\binom{n}{k}=(k+1)\binom{n+1}{k+1}$.
- Ex. 2 : ok pour X, pour Y utiliser le système complet $(X=k)_{k\geqslant 1}$; pour $\mathbb{E}(Y)$, écrire Y=X+Z en précisant la loi de Z.
- Ex. 3 : montrer par récurrence que $X_n \hookrightarrow \mathcal{U}_{\llbracket 0,n\rrbracket}$ en utilisant le lien entre X_n et X_{n-1} et les événements "on tire une boule blanche au n-ième tirage" et son contraire.
- Ex. 4 : 1. ok ; 2. distinguer 2 cas selon que l'on obtient Pile ou Face au 1er lancer ; 3. récurrence linéaire d'ordre 2...
- Ex. 5:1) calculer d'abord la probabilité que A gagne au k-ième essai puis utiliser une réunion, idem pour B; 2) temps d'attente...
- Ex. 6 : a) X_1 suit une loi binomiale; b) utiliser $Y_2=2X_2$ et le système complet $(X_1=i)_{i\in \llbracket 0,20\rrbracket}$; c) $X=X_1+X_2$ d'où...; d) on veut $\mathbb{E}(X)=5$.
- Ex. 7 : a) utiliser $\mathbb{P}(X = k) = \mathbb{P}(X \geqslant k) \mathbb{P}(X \geqslant k + 1)$, en déduire que $(\mathbb{P}(X \geqslant k))_k$ est une suite géométrique, puis la valeur de $\mathbb{P}(X = k)$; conclure.
- Ex. 8:1. utiliser l'indépendance des variables associées aux faux 0 et aux faux 1, ainsi que le binôme de Newton; 2. exprimer la probabilité d'avoir k faux 0 à l'aide des deux variables introduites en 1. et de la variable associée au nombre total d'erreurs.

\sim ■ Indications pour les exercices du TD n $^{\circ}$ 4 $\blacktriangleright \sim$

- Ex. 1 : ok en utilisant $(n+1)\binom{n}{k}=(k+1)\binom{n+1}{k+1}$.
- Ex. 2 : ok pour X, pour Y utiliser le système complet $(X=k)_{k\geqslant 1}$; pour $\mathbb{E}(Y)$, écrire Y=X+Z en précisant la loi de Z.
- Ex. 3 : montrer par récurrence que $X_n \hookrightarrow \mathcal{U}_{\llbracket 0,n \rrbracket}$ en utilisant le lien entre X_n et X_{n-1} et les événements "on tire une boule blanche au n-ième tirage" et son contraire.
- Ex. 4 : 1. ok ; 2. distinguer 2 cas selon que l'on obtient Pile ou Face au 1er lancer ; 3. récurrence linéaire d'ordre 2...
- Ex. 5:1) calculer d'abord la probabilité que A gagne au k-ième essai puis utiliser une réunion, idem pour B; 2) temps d'attente...
- Ex. 6 : a) X_1 suit une loi binomiale; b) utiliser $Y_2=2X_2$ et le système complet $(X_1=i)_{i\in \llbracket 0,20\rrbracket}$; c) $X=X_1+X_2$ d'où...; d) on veut $\mathbb{E}(X)=5$.
- Ex. 7 : a) utiliser $\mathbb{P}(X=k)=\mathbb{P}(X\geqslant k)-\mathbb{P}(X\geqslant k+1)$, en déduire que $(\mathbb{P}(X\geqslant k))_k$ est une suite géométrique, puis la valeur de $\mathbb{P}(X=k)$; conclure.
- Ex. 8:1. utiliser l'indépendance des variables associées aux faux 0 et aux faux 1, ainsi que le binôme de Newton; 2. exprimer la probabilité d'avoir k faux 0 à l'aide des deux variables introduites en 1. et de la variable associée au nombre total d'erreurs.