TD n° 10 : Développements limités

Exercice 1

Écrire un développement limité à l'ordre 2 au voisinage de 0 de :

$$f(x) = (1+x)(1-2x)^2$$
; $g(x) = \cos(x) - e^x$; $h(x) = (\sin(x))^3$; $i(x) = (\cos(x) - e^x)^3 + \sqrt{1-x}$.

Exercice 2

Écrire un développement limité à l'ordre 4 au voisinage de 0 de :

$$j(x) = \sin(x)\cos(x)$$
; $k(x) = e^x(\sin(x))^2$; $\ell(x) = \sqrt[3]{1+x}\ln(1+x)$.

Exercice 3

Écrire un développement limité à l'ordre n au voisinage de 0 de :

$$m(x) = \frac{x - \ln(1 + 3x)}{\sin(6x)} (n = 2) ; n(x) = e^{2\cos(x)} (n = 4) ; p(x) = \ln(1 + x + \sqrt{1 + 2x}) (n = 3).$$

Exercice 4

Soit $n \in \mathbb{N}^*$ et $f: x \longmapsto (e^x - 1)^n$. Calculer $f^{(k)}(0)$ pour $k \in \{0, 1, \dots, n\}$.

$$\overline{\text{Déterminer : a) } \lim_{x \to 1} \frac{1 - x + \ln(x)}{1 - \sqrt{2x - x^2}} \quad \text{b) } \lim_{x \to \frac{\pi}{2}} \left(\frac{2}{\cos^2(x)} + \frac{1}{\ln(\sin(x))} \right).$$

Exercice 6

Soit a > 0, b > 0 deux réels fixés. Déterminer : $\lim_{x \to 0} \frac{(1 + (a+b)x)^{\frac{1}{x}} - (1+ax)^{\frac{1}{x}}(1+bx)^{\frac{1}{x}}}{x}$

<u>Exercice 7</u> (*TSE 2022*)

On considère la fonction $f: x \longmapsto \frac{xe^x - \sin(x) - x^2}{\ln(1+x) - x}$. 1. Déterminer l'ensemble de définition de f et donner un développement limité d'ordre 2 en

- 2. Montrer que f est prolongeable par continuité en 0. On appelle q ce prolongement.
- 3. Montrer que g est dérivable en 0, et déterminer q'(0).
- 4. Déterminer l'équation de la tangente \mathcal{T} en 0 au graphe \mathcal{C} de g, et préciser les positions relatives de \mathcal{C} et \mathcal{T} au voisinage de 0.

Exercice 8

On pose, pour tout entier $n \ge 1$: $v_n = \sum_{k=1}^n \frac{1}{k}$ et $w_n = v_n - \ln n$.

- 1. Déterminer le développement limité à lordre 2, au voisinage de 0, de $\ln(1+x) \frac{x}{1+x}$.
- 2. En déduire un équivalent de $w_n w_{n+1}$ lorsque n tend vers $+\infty$.
- 3. Montrer que la série de terme général $w_n w_{n+1}$ est convergente, puis que la suite (w_n)

converge et en déduire que : $\sum_{k=1}^{\infty} \frac{1}{k} \sim \ln n$.

Exercice 9

1. On considère la fonction q définie sur \mathbb{R} par $q(u) = e^{u-u^2}$.

Calculer g'(u), g''(u) puis, en utilisant la formule de Taylor-Young, déterminer le développement limité de g à l'ordre 2 au voisinage de 0.

- 2. Soit $f: x \longmapsto \frac{x^2 + 1}{x + 2}e^{\frac{x-1}{x^2}}$
- a) Quel est le domaine de définition de f? Montrer que l'on peut prolonger f par continuité en 0.
- b) Déterminer l'asymptote oblique Γ de la fonction f lorsque x tend vers $\pm \infty$ et indiquer dans chaque cas la position relative du graphe de f par rapport à Γ .

- Ex. 1 : pour f développer et ordonner ; pour g et i utiliser les DL connus ; pour h donner un équivalent et conclure .
- Ex. 2 : utiliser les DL connus et faire les produits.
- Ex. 3 : composer les DL connus sans oublier la condition "u(0) = 0".
- Ex. 4 : donner un équivalent et conclure.
- Ex. 5 : utiliser des DL du numérateur et du dénominateur après s'être ramené en 0, pour trouver un équivalent.
- Ex. 6 : déterminer d'abord un DL du numérateur à l'ordre 1.
- Ex. 7 : 1. faire un produit de DL en développant suffisamment au numérateur et au dénominateur pour anticiper les simplifications ; 2. et 3. ok grâce à 1. ; 4. idem et étudier le signe de g(x)-(ax+b) grâce à un équivalent.
- Ex. 8 : 1. $\frac{x}{1+x} = x \times \frac{1}{1+x}$; 2. calculer $w_n w_{n+1}$ puis utiliser $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$; 3. critère d'équivalence, puis exprimer w_n comme somme partielle d'une série ; écrire $w_n = \ell + o(1)$ puis exprimer v_n en fonction de n et ℓ .
- Ex. 9 : 1. ok ; 2. a) ok ; 2. b) calculer $\lim_{x\to 0} f(x)$; 2. c) poser $u=\frac{1}{x}$ puis développer $h(u)=f\left(\frac{1}{u}\right)$ au voisinage de 0 et conclure en revenant à f(x).

\sim ■ Indications pour les exercices du TD n $^\circ$ 10 \blacktriangleright \sim

- Ex. 1 : pour f développer et ordonner ; pour g et i utiliser les DL connus ; pour h donner un équivalent et conclure .
- Ex. 2 : utiliser les DL connus et faire les produits.
- Ex. 3 : composer les DL connus sans oublier la condition "u(0) = 0".
- Ex. 4 : donner un équivalent et conclure.
- Ex. 5 : utiliser des DL du numérateur et du dénominateur après s'être ramené en 0, pour trouver un équivalent.
- Ex. 6 : déterminer d'abord un DL du numérateur à l'ordre 1.
- Ex. 7 : 1. faire un produit de DL en développant suffisamment au numérateur et au dénominateur pour anticiper les simplifications ; 2. et 3. ok grâce à 1. ; 4. idem et étudier le signe de g(x)-(ax+b) grâce à un équivalent.
- Ex. 8: 1. $\frac{x}{1+x} = x \times \frac{1}{1+x}$; 2. calculer $w_n w_{n+1}$ puis utiliser $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$; 3. critère d'équivalence, puis exprimer w_n comme somme partielle d'une série; 4. écrire $w_n = \ell + o(1)$ puis exprimer v_n en fonction de n et ℓ .
- Ex. 9 : 1. ok ; 2. a) ok ; 2. b) calcular $\lim_{x\to 0} f(x)$; 2. c) poser $u=\frac{1}{x}$ puis développer $h(u)=f\Big(\frac{1}{u}\Big)$ au voisinage de 0 et conclure en revenant à f(x).