P. Sup. B/L Octobre 2025

Soutien n° 4 : Couples de V.A.R. discrètes

Exercice 1 Vrai ou Faux?

- 1. Si X et Y sont deux variables aléatoires suivant une loi de Bernoulli, alors il est possible que X + Y suive une loi de Bernoulli.
- 2. Si X et Y sont deux variables aléatoires possédant une variance et si $X \leq Y$, alors on a : $V(X) \leq V(Y)$.
- 3. Soient X et Y deux variables aléatoires. On a : X + Y = Max(X, Y) + Min(X, Y).
- 4. Soient X et Y deux variables aléatoires telles que $X(\Omega) = Y(\Omega) = \mathbb{N}$. Pour tout n de \mathbb{N} , on a l'inclusion : $(\operatorname{Min}(X,Y) \leq n) \subset (\operatorname{Max}(X,Y) \leq n)$.

Exercice 2

Soit X une V.A.R. suivant la loi binomiale $\mathcal{B}(n,p)$. On définit la variable Y par : Y=X si $X\neq 0$ et Y prend une valeur au hasard dans $[\![0,n]\!]$ si X=0.

Trouver la loi de Y et calculer $\mathbb{E}(Y)$.

Exercice 3

Le nombre X d'individus à l'écoute d'une radio suit une loi de Poisson de paramètre λ . Cette radio émet un avis de tempête et chaque individu à l'écoute entend l'alerte avec la probabilité $p \in [0, 1]$. On note Y la variable égale au nombre d'individus recevant l'avis de tempête.

- 1. Soit $n \in \mathbb{N}$. Sachant (X = n) réalisé, quelle est la loi de Y?
- 2. En déduire la loi de Y à l'aide du système complet $(X = n)_{n \in \mathbb{N}}$.

Exercice 4

Soient X et Y deux V.A.R. discrètes à valeurs dans $J = [\![1,n+1]\!]$ telles que :

$$\forall (i,j) \in J^2, \ \mathbb{P}((X=i) \cap (Y=j)) = \frac{\binom{n}{i-1} \binom{n}{j-1}}{4^n}.$$

- a) Montrer que l'on définit bien une loi de probabilité.
- b) Déterminer la loi de X, puis celle de X-1.
- c) Calculer $\mathbb{E}(X)$ et V(X).

Exercice 5

Une urne contient 4 boules vertes et douze blanches. On fait des tirages successifs et, à chaque fois, on remet la boule tirée et on rajoute 3 boules de sa couleur. On note X_i la variable aléatoire réelle prenant pour valeur 0 si, au i-ième tirage on extrait une boule verte, 1 sinon.

- 1. Quelle est la loi de X_1 ? Calculer son espérance.
- 2. Déterminer la loi conjointe du couple (X_1, X_2) .
- 3. En déduire la loi de probabilité de X_2 .
- 4. Calculer la covariance de X_1 et X_2 puis leur coefficient de corrélation linéaire.

Exercice 6

Lors d'une réception mondaine, trois salons A, B et C reçoivent les n invités $(n \in \mathbb{N}^*)$. Ces derniers se répartissent au hasard dans les trois salons. On désigne par X (resp. Y) la variable aléatoire réelle prenant pour valeur le nombre de personnes entrant dans le salon A (resp. B).

- 1. Quelle est la loi de X et de Y? Donner leur espérance mathématique.
- 2. Donner la loi conjointe du couple (X, Y).
- 3. Calculer la covariance du couple (X,Y) et le coefficient de corrélation linéaire de ces deux variables.

Exercice 7

Soient X_1, \ldots, X_n des variables aléatoires indépendantes et de même loi. On suppose que : $X_1(\Omega) = \{1; 2\}$ avec $\mathbb{P}(X_1 = 1) = \frac{1}{4}$ et $\mathbb{P}(X_1 = 2) = \frac{3}{4}$.

- 1. Calculer $V\left(\sum_{k=1}^{n} X_k\right)$.
- 2. Pour $k \in \{1, ..., n-1\}$. On définit la V.A.R. $Y_k = X_k + X_{k+1}$.
 - a) Déterminer $Y_k(\Omega)$, puis la loi de Y_k .
 - b) Les variables Y_1 et Y_2 sont-elles indépendantes? Calculer $V\left(\sum_{k=1}^{n-1} Y_k\right)$.