$\mathbf{DM} \ \mathbf{n}^{\circ} \mathbf{0}$

Exercice 1 Les trois questions sont indépendantes

- 1. On considère la fonction $f: x \longmapsto \frac{1}{x(x+1)}$.
 - a) Déterminer deux réels a et b tels que, pour tout $x \in [1,2]$, on ait : $f(x) = \frac{a}{x} + \frac{b}{x+1}$.
 - b) En déduire la valeur de l'intégrale $I = \int_1^2 \frac{1}{x(x+1)} dx$.
 - c) Calculer l'intégrale $J = \int_1^2 \frac{\ln(1+x)}{x^2} dx$.
- 2. Calculer l'intégrale $I = \int_0^{\frac{\pi}{4}} \frac{1}{\cos^4(x)} dx$ à l'aide du changement de variable $t = \tan(x)$.
- 3. a) Déterminer la nature et la somme éventuelle de la série $\sum_{n\geqslant 2}u_n$ où $u_n=(-1)^n\ln\left(\frac{n+1}{n-1}\right)$.
 - b) Déterminer la nature de la série $\sum_{n\geq 0} \ln (1+e^{-n})$.

Exercice 2

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \int_0^1 \frac{x}{n(x+n)} dx$.

- 1. Calculer u_1 .
- 2. Soit $n \in \mathbb{N}^*$. On définit la fonction f_n sur [0,1] par : $\forall x \in [0,1], \ f_n(x) = \frac{x}{x+n}$. Dresser le tableau de variations de f_n sur [0,1].
- 3. a) Montrer que pour tout $n \in \mathbb{N}^*$, $0 \le u_n \le \frac{1}{n^2}$.
 - b) En déduire la convergence de la série $\sum u_n$. On note $\gamma = \sum_{n=1}^{+\infty} u_n$.
- 4. On pose, pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n u_k$.
 - a) Justifier : $\forall n \in \mathbb{N}^*, S_n \leqslant \gamma$.
 - b) Déterminer deux réels a,b tels que, pour tout $x\in[0,1]$ et tout $k\in\mathbb{N}^*,$ on ait :

$$\frac{x}{k(x+k)} = \frac{a}{k} + \frac{b}{x+k}.$$

- c) Établir alors que : $\forall k \in \mathbb{N}^*, \ u_k = \frac{1}{k} \ln(k+1) + \ln(k).$
- d) Vérifier que, pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{1}{k} \ln(n+1)$.
- 5. Pour tout $n \in \mathbb{N}^*$, on pose $T_n = \sum_{k=1}^n \frac{1}{k} \ln(n)$.
 - a) Justifier que $(T_n)_{n\in\mathbb{N}^*}$ est convergente et préciser sa limite.
 - b) À l'aide du T.A.F., établir que : $\forall n \in \mathbb{N}^*, \ \frac{1}{n+1} \leq \ln(n+1) \ln(n) \leq \frac{1}{n}$. En déduire que $(T_n)_{n \in \mathbb{N}^*}$ est décroissante.
- 6. Donner finalement, pour tout $n \in \mathbb{N}^*$, un encadrement de γ à l'aide de T_n et S_n .

Exercice 3

Pour tout entier naturel n supérieur ou égal à 2, on pose $a_n = \frac{1}{n \ln(n)}$.

1. a) Montrer que, pour tout entier naturel k supérieur ou égal à 2, on a :

$$\int_{k}^{k+1} \frac{1}{t \ln(t)} \, \mathrm{d}t \leqslant \frac{1}{k \ln(k)}.$$

b) En déduire, par sommation, la nature de la série de terme général a_n .

Dans la suite, on considère la fonction f définie sur $]-\infty,1[$ par $f(x)=\frac{-x}{(1-x)\ln(1-x)}$ si $x \in]-\infty, 0[\cup]0, 1[$ et f(0) = 1.

- 2. a) Montrer que f est continue sur $]-\infty,1[$.
 - b) On admet le résultat suivant : au voisinage de 0, on a $\ln(1-x) = -x \frac{x^2}{2} + o(x^2)$. Montrer que f est dérivable en 0 et donner la valeur de f'(0).
- 3. a. Montrer que f est dérivable sur $]-\infty,0[$ et sur]0,1[, puis calculer f'(x) pour tout $x \in]-\infty, 0[\cup]0, 1[.$
- b) Étudier le signe de la quantité $\ln(1-x) + x$ lorsque x appartient à $]-\infty, 1[$, puis en déduire les variations de f.
- c) Déterminer les limites de f aux bornes de son ensemble de définition, puis dresser son tableau de variation.
- 4. a) Établir que, pour tout $n \in \mathbb{N}^*$, il existe un seul réel de [0,1[, noté u_n , tel que $f(u_n) = n$ et donner la valeur de u_1 .
 - b) Montrer que la suite (u_n) converge et que $\lim_{n\to+\infty} u_n = 1$.
- c) Pour tout entier naturel n non nul, calculer $f\left(1-\frac{1}{n\sqrt{n}}\right)$ puis en déduire qu'il existe un

entier naturel n_0 tel que, pour tout entier n supérieur ou égal à n_0 , on a : $u_n \le 1 - \frac{1}{n\sqrt{n}}$. d) En déduire, à l'aide de la première question, que la série de terme général $\frac{-1}{n \ln(1-u_n)}$

est divergente.

e) Conclure, en revenant à la définition de u_n , que la série de terme général $1-u_n$ est divergente.