L. Sup. B/L Janvier 2025

$\overline{\text{TD }}$ n° 9 : Nombres complexes

Exercice 1

Mettre chacun des nombres complexes suivants sous la forme algébrique :

$$z_1 = (\sqrt{2} + i\sqrt{2})^2$$
; $z_2 = (1 - 5i)^2$; $z_3 = (2 + 3i)^3$; $z_4 = \frac{4 - i}{2i - 5}$; $z_5 = \frac{1}{i}$; $z_6 = (\frac{1 + i}{1 - i})^2$.

Exercice 2

On pose
$$j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
; calculer j^2 .

En déduire les relations : $1 + j + j^2 = 0$; $j^3 = 1$; $\frac{1}{j} = j^2 = \bar{j}$.

Exercice 3

Calculer le module et l'argument des nombres complexes suivants :

$$x = 1 + i$$
; $y = 1 - i\sqrt{3}$; $z = \frac{1 + i\sqrt{3}}{\sqrt{3} + i}$; $t = (1 - i)^8 (1 + i\sqrt{3})^{-6}$; $u = \frac{2}{(1 - i)^n}$ $(n \in \mathbb{N})$.

Exercice 4

Déterminer l'ensemble des nombres complexes z tels que $Z=z^2+2z-3$ soit un nombre réel. Quelles sont leurs images dans le plan ?

Exercice 5

Soient θ et θ' deux nombres réels. Montrer que :

a)
$$e^{i\theta} + 1 = 2e^{i\frac{\theta}{2}}\cos(\frac{\theta}{2})$$
 b) $e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin(\frac{\theta}{2})$ c) $e^{i\theta} + e^{i\theta'} = 2e^{i\frac{\theta+\theta'}{2}}\cos(\frac{\theta-\theta'}{2})$

Exercice 6

On considère deux nombres complexes z_1 et z_2 avec $|z_1|=|z_2|=1$ et $z_1z_2\neq -1$.

Montrer que
$$Z = \frac{z_1 + z_2}{1 + z_1 z_2} \in \mathbb{R}$$
.

Exercice 7

Linéariser les expressions suivantes : $A(x) = \sin^3(2x)$ et $B(x) = \sin^2(3x)\cos(x)$.

Exercice 8

Résoudre les équations : (1) $z^2 = -2 + 2i$; (2) $z^2 = 3 - 4i$; (3) $z^5 = \bar{z}$

Exercice 9

Soient
$$x \in \mathbb{R}$$
, $n \in \mathbb{N}$, on pose $S = \sum_{k=0}^{n} \binom{n}{k} \cos(kx)$ et $T = \sum_{k=0}^{n} \binom{n}{k} \sin(kx)$.
Calculer $S + iT$ puis en déduire S et T .

Exercice 10

a) Soit
$$x \in \mathbb{R}$$
, calculer $S(x) = \sum_{k=0}^{n-1} \cos(kx)$ et $T(x) = \sum_{k=0}^{n-1} \sin(kx)$.

b) En déduire le calcul de :
$$U(x) = \sum_{k=0}^{n-1} \sin(kx)\cos(kx)$$
.

Indications pour les exercices du TD n° 9

- ex. 1 : pour les fractions, on peut utiliser : $\frac{1}{z} = \frac{\bar{z}}{|z|^2}$ ou multiplier et diviser par le conjugué.
- ex. 2 : on trouve $j^2 = \bar{j}$ et les relations se vérifient simplement.
- ex. 3 : pour les produits et les fractions, utiliser les propriétés du module et de l'argument.
- ex. 4 : utiliser la caractérisation des réels par le conjugué ou travailler avec la forme algébrique de z.
- ex. 5 : utiliser les formules d'Euler et développer.
- ex. 6 : utiliser $\bar{z}_1=\frac{1}{z_1}$ et $\bar{z}_2=\frac{1}{z_2}$ pour calculer \bar{Z} . ex. 7 : utiliser les formules d'Euler.
- ex. 8:a) c) utiliser la forme exponentielle de z; b) utiliser la forme algébrique de z et l'égalité des modules
- ex. 9 : reconnaître le développement de $(1+e^{ix})^n$; utiliser l'ex. 5 pour déterminer partie réelle et partie imaginaire.
- ex. 10 : a) calculer S(x) + iT(x) puis séparer partie réelle et partie imaginaire ; b) linéariser $\sin(\theta)\cos(\theta)$ puis utiliser a).

Indications pour les exercices du TD n° 9

- ex. 1 : pour les fractions, on peut utiliser : $\frac{1}{z}=\frac{\bar{z}}{|z|^2}$ ou multiplier et diviser par le conjugué.
- ex. 2 : on trouve $j^2=\bar{j}$ et les relations se vérifient simplement.
- ex. 3 : pour les produits et les fractions, utiliser les propriétés du module et de l'argument.
- ex. 4 : utiliser la caractérisation des réels par le conjugué ou travailler avec la forme algébrique de z.
- ex. 5 : utiliser les formules d'Euler et développer. ex. 6 : utiliser $\bar{z}_1=\frac{1}{z_1}$ et $\bar{z}_2=\frac{1}{z_2}$ pour calculer \bar{Z} .
- ex. 7: utiliser les formules d'Euler.
- ex. 8:a)c) utiliser la forme exponentielle de z;b) utiliser la forme algébrique de z et l'égalité des modules
- ex. 9 : reconnaître le développement de $(1+e^{ix})^n$; utiliser l'ex. 5 pour déterminer partie réelle et partie
- ex. 10 : a) calculer S(x)+iT(x) puis séparer partie réelle et partie imaginaire ; b) linéariser $\sin(\theta)\cos(\theta)$ puis utiliser a).