L. Sup. B/L Novembre 2025

TD n°6: Applications linéaires et Matrices (1)

Exercice 1

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ $(x,y) \longmapsto (x-2y,-x+2y,2x-4y)$

- a) Montrer que f est une application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 .
- b) Déterminer un vecteur qui engendre Ker(f).
- c) Montrer que Im(f) est le sous-espace vectoriel de \mathbb{R}^3 engendré par u=(1,-1,2).

Exercice 2

Soit
$$f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$$

 $(x, y, z, t) \longmapsto (x + z + 2t, y + z + t, 2x + 2y + 4z + 6t)$

- a) Montrer que $f \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^3)$, puis déterminer le rang de f et donner une base de $\mathrm{Im}(f)$.
- b) En déduire la dimension de Ker(f) et vérifier que les vecteurs u=(1,1,-1,0) et v=(2,1,0,-1) en forment une base.

Exercice 3

Soient $f \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n)$ et F un s.e.v. de \mathbb{R}^p .

- 1. Montrer que f(F) est un s.e.v. de \mathbb{R}^n , puis que dim $f(F) \leq \dim F$.
- 2. Déterminer f(F) lorsque $F = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 2z = 0\}$ et f est l'endomorphisme de \mathbb{R}^3 défini par : f((x, y, z)) = (2x y + 4z, -x + 3y 2z, 3x + 5y + 6z).

Exercice 4

Soit f un endomorphisme de \mathbb{R}^n .

- 1. Montrer que, si $\operatorname{rg}(f) = 1$, alors il existe $\lambda \in \mathbb{R}$ tel que $f \circ f = \lambda f$. Réciproque?
- 2. Soit $g \in \mathcal{L}(\mathbb{R}^n)$, montrer que si $\text{Im}(f) \cap \text{Ker}(g) = \{0_{\mathbb{R}^n}\}$, alors $\text{rg}(g \circ f) = \text{rg}(f)$.

Exercice 5

- a) Soit $A = \{(x, y, z) \in \mathbb{R}^3 \mid x = y\}$ et $B = \text{Vect}\{(1, 1, 1)\}$. Construire un endomorphisme f de \mathbb{R}^3 tel que Ker(f) = A et Im(f) = B.
- b) Soient A et B deux sous-espaces vectoriels de \mathbb{R}^n . Trouver une condition nécessaire et suffisante portant sur A et B pour qu'il existe un endomorphisme f de \mathbb{R}^n vérifiant $\operatorname{Ker}(f) = A$ et $\operatorname{Im}(f) = B$.

Exercice 6

Soit $f \in \mathcal{L}(\mathbb{R}^n)$. On suppose qu'il existe $x \in \mathbb{R}^n$, $x \neq 0_{\mathbb{R}^n}$, tel que $(f(x), f^2(x), \dots, f^n(x))$ soit une base de \mathbb{R}^n , où f^k désigne $\underbrace{f \circ \cdots \circ f}$.

- 1. Montrer que f est un automorphisme de \mathbb{R}^n .
- 2. Montrer que $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ est une base de \mathbb{R}^n .
- 3. Montrer qu'il existe des réels a_0, a_1, \dots, a_{n-1} tels que $f^n = \sum_{k=0}^{n-1} a_k f^k$.

Exercice 7

Soit $u \in \mathcal{L}(\mathbb{R}^n)$. On note u^2 l'application $u \circ u$.

Montrer que : 1)
$$u^2 = 0 \iff \operatorname{Im}(u) \subset \operatorname{Ker}(u)$$

2) $\operatorname{Ker}(u) = \operatorname{Ker}(u^2) \iff \operatorname{Im}(u) \cap \operatorname{Ker}(u) = \{0_{\mathbb{R}^n}\}.$

Exercice 8

Soient f et g deux endomorphismes de \mathbb{R}^n .

- a) Montrer que : $\operatorname{Im}(q \circ f) \subset \operatorname{Im}(q)$ et $\operatorname{Ker}(f) \subset \operatorname{Ker}(q \circ f)$.
- b) Montrer que, si $f \circ g = \mathrm{Id}_{\mathbb{R}^n}$, alors : $\mathrm{Im}(g \circ f) = \mathrm{Im}(g)$ et $\mathrm{Ker}(f) = \mathrm{Ker}(g \circ f)$.

Indications pour les exercices du TD n° 6

noyau.

- Ex. 1 : a) ok; b) résoudre $f((x,y)) = 0_{\mathbb{R}^3}$; c) calculer l'image des vecteurs de la base canonique.
- Ex. 2 : a) calculer le rang du système formé des images des vecteurs de la base canonique de \mathbb{R}^4 ; b) théorème du rang, puis vérifier que la famille donnée est libre et dans $\operatorname{Ker}(f)$.
- Ex. 3 : 1. vérifier la définition d'un s.e.v., puis utiliser une base de F pour trouver une famille génératrice de f(F); 2. trouver une base de F et appliquer 1.
- Ex. 4 : 1. utiliser une base (a) de $\operatorname{Im}(f)$ pour calculer $f \circ f(x)$; 2. montrer que l'image par g d'une base de $\operatorname{Im}(f)$ est une base de $\operatorname{Im}(g \circ f)$.
- Ex. 5 : a) compléter une base de A en une base de \mathbb{R}^3 puis construire une application linéaire telle que $A \subset \operatorname{Ker}(f)$ et $\operatorname{Im}(f) = B$; b) raisonner par double implication; construire une application linéaire de noyau A et d'image B en complétant une base de A pour obtenir une base de \mathbb{R}^n .
- Ex. 6 : 1. vérifier que f est surjectif ; 2. montrer que $\mathfrak B$ est libre en partant d'une combinaison linéaire nulle et en composant par f ; 3. vérifier que l'égalité est vraie pour x puis pour tous les vecteurs de $\mathfrak B$. Ex. 7 : raisonner par implication directe et réciproque en exploitant les définitions de l'image et du
- Ex. 8 : a) raisonner sur des vecteurs en appliquant les définitions ; b) utiliser $g = g \circ f \circ g$ et $f \circ g \circ f = f$.

Indications pour les exercices du TD n° 6

- Ex. 1 : a) ok; b) résoudre $f((x,y)) = 0_{\mathbb{R}^3}$; c) calculer l'image des vecteurs de la base canonique.
- Ex. 2 : a) calculer le rang du système formé des images des vecteurs de la base canonique de \mathbb{R}^4 ; b) théorème du rang, puis vérifier que la famille donnée est libre et dans $\operatorname{Ker}(f)$.
- Ex. 3 : 1. vérifier la définition d'un s.e.v., puis utiliser une base de F pour trouver une famille génératrice de f(F); 2. trouver une base de F et appliquer 1.
- Ex. 4 : 1. utiliser une base (a) de $\mathrm{Im}(f)$ pour calculer $f\circ f(x)$; 2. montrer que l'image par g d'une base de $\mathrm{Im}(f)$ est une base de $\mathrm{Im}(g\circ f)$.
- Ex. 5 : a) compléter une base de A en une base de \mathbb{R}^3 puis construire une application linéaire telle que $A \subset \mathrm{Ker}(f)$ et $\mathrm{Im}(f) = B$; b) raisonner par double implication; construire une application linéaire de noyau A et d'image B en complétant une base de A pour obtenir une base de \mathbb{R}^n .
- Ex. 6 : 1. vérifier que f est surjectif ; 2. montrer que $\mathcal B$ est libre en partant d'une combinaison linéaire nulle et en composant par f ; 3. vérifier que l'égalité est vraie pour x puis pour tous les vecteurs de $\mathcal B$. Ex. 7 : raisonner par implication directe et réciproque en exploitant les définitions de l'image et du novau.
- Ex. 8 : a) raisonner sur des vecteurs en appliquant les définitions ; b) utiliser $g = g \circ f \circ g$ et $f \circ g \circ f = f$.