L. Sup. B/L Octobre 2025

TD n $^{\circ}$ 5 : Espace vectoriel \mathbb{R}^n

Exercice 1

Reconnaître parmi les ensembles suivants ceux qui sont des sous-espaces vectoriels de \mathbb{R}^3 :

$$A = \{(2a+b, a+b, a-2b) \mid (a,b) \in \mathbb{R}^2\}; \quad B = \{(a,b,b-a^2) \mid (a,b) \in \mathbb{R}^2\}$$

$$C = \{(a-1,b+1,a+b) \mid (a,b) \in \mathbb{R}^2\}$$

Exercice 2

Reconnaître parmi les ensembles suivants ceux qui sont des sous-espaces vectoriels de \mathbb{R}^n :

$$E = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + x_n^2 = 0\}$$

$$F = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_3 + x_4 = -1\}$$

$$G = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + x_2 + x_3 = 0\}$$

$$H = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + \dots + x_n = 0\}$$

$$K = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid |x_1| = |x_2|\}$$

Exercice 3

On considère les vecteurs u = (-4, 4, 3), v = (-3, 2, 1), s = (-1, 2, 2) et t = (-1, 6, 7) de \mathbb{R}^3 . Montrer que Vect $\{u, v\} = \text{Vect}\{s, t\}$.

Exercice 4

Soient $E = \{(x + y, x + 2y, x + 3y, x) \mid x \in \mathbb{R}, y \in \mathbb{R}\}\ \text{et } F = \text{Vect}\{(1, -1, 1, -1)\}.$

- a) Montrer que E est un sous-espace vectoriel de \mathbb{R}^4 et déterminer une famille de vecteurs de \mathbb{R}^4 qui engendre E.
- b) Déterminer $E \cap F$.

Exercice 5

Soit $E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}.$

- a) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 et déterminer une famille génératrice de E à deux éléments.
- b) La famille trouvée est-elle libre?

Exercice 6

Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + z = 0\}$; justifier que F est un sous-espace vectoriel de \mathbb{R}^3 . En donner une base. Pour quelle(s) valeur(s) de $m \in \mathbb{R}$ le vecteur u = (1, m, 1) est-il dans F? Donner alors ses coordonnées dans la base choisie. Pour les autres valeurs de m, que peut-on dire de la famille obtenue en adjoignant u à la base de F?

Exercice 7

Soit (u_1, u_2, u_3) une famille libre de trois vecteurs de \mathbb{R}^n $(n \ge 3)$. Montrer que $(u_1 + u_2, u_1 + u_3, u_2 + u_3)$ est aussi une famille libre de \mathbb{R}^n .

Exercice 8

On considère dans \mathbb{R}^3 les vecteurs $u_1 = (-1, 1, 1), \quad u_2 = (1, -1, 1)$ et $u_3 = (1, 1, -1).$

- a) Montrer que $\mathcal{B} = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- b) Quelles sont les coordonnées des vecteurs de la base canonique de \mathbb{R}^3 dans la base \mathcal{B} ?

Exercice 9

Dans \mathbb{R}^4 , soient $v_1 = (1, 2, 1, 0), v_2 = (-1, 1, 1, 1), v_3 = (2, -1, 0, 1), v_4 = (-1, 6, 3, 0)$ et $v_5 = (4, -5, -2, 1)$.

Calculer le rang de $(v_1, v_2, v_3, v_4, v_5)$ et donner une base de $E = \text{Vect}\{v_1, v_2, v_3, v_4, v_5\}$.

Exercice 10

Dans \mathbb{R}^4 , on considère les vecteurs u = (3, 2, 1, 4), v = (2, 2, 2, 6), w = (4, 2, 0, 2), t = (-1, 0, 1, 2) et s = (0, 3, 2, 1).

Soient $E = \text{Vect}\{u, v, w, t, s\}, \quad F = \text{Vect}\{u, v, w\} \text{ et } G = \text{Vect}\{t, s\}.$

- a) Quelles sont les dimensions de E, F et G?
- b) Montrer que $t \in F$ et que $s \notin F$. En déduire la dimension de $F \cap G$.

Indications pour les exercices du TD n° 5

- Ex. 1 : vérifier la définition ou exhiber une famille de vecteurs de \mathbb{R}^3 qui engendre l'ensemble ou montrer qu'une des conditions de la définition n'est pas vérifiée à l'aide d'un contre-exemple.
- Ex. 2: idem
- Ex. 3: montrer que s et t sont des combinaisons linéaires de u et v et réciproquement, puis conclure.
- Ex. 4 : a) trouver deux vecteurs qui engendrent E; b) écrire à quelles conditions $(x, y, z, t) \in F$.
- Ex. 5:a) écrire les vecteurs de E comme combinaison linéaire de 2 vecteurs; b) utiliser la définition.
- Ex. 6 : trouver une famille génératrice de F puis vérifier qu'elle est libre ; ok ; écrire u comme combinaison linéaire des vecteurs de la base ; étudier la liberté de la famille obtenue.
- Ex. 7 : utiliser la définition et résoudre le système obtenu.
- Ex. 8 : a) vérifier que \mathcal{B} est une famille libre et conclure; b) écrire chaque e_i comme combinaison linéaire des u_i et déterminer les coefficients en résolvant un système.
- Ex. 9 : calculer le rang en utilisant la matrice des coordonnées dans la base canonique, puis, à l'aide des relations trouvées (colonnes nulles), éliminer certains vecteurs de la famille génératrice de départ pour obtenir une famille libre.
- Ex. 10 : a) calculer le rang des familles de vecteurs correspondants ; b) montrer qu'on ne peut pas avoir $\dim F \cap G = 2$.

Indications pour les exercices du TD n° 5

- Ex. 1 : vérifier la définition ou exhiber une famille de vecteurs de \mathbb{R}^3 qui engendre l'ensemble ou montrer qu'une des conditions de la définition n'est pas vérifiée à l'aide d'un contre-exemple.
- Ex. 2: idem
- Ex. 3 : montrer que s et t sont des combinaisons linéaires de u et v et réciproquement, puis conclure.
- Ex. 4 : a) trouver deux vecteurs qui engendrent E; b) écrire à quelles conditions $(x, y, z, t) \in F$.
- Ex. 5 : a) écrire les vecteurs de E comme combinaison linéaire de 2 vecteurs ; b) utiliser la définition.
- Ex. 6 : trouver une famille génératrice de F puis vérifier qu'elle est libre ; ok ; écrire u comme combinaison linéaire des vecteurs de la base ; étudier la liberté de la famille obtenue.
- Ex. 7 : utiliser la définition et résoudre le système obtenu.
- Ex. 8 : a) vérifier que \mathcal{B} est une famille libre et conclure; b) écrire chaque e_i comme combinaison linéaire des u_i et déterminer les coefficients en résolvant un système.
- Ex. 9 : calculer le rang en utilisant la matrice des coordonnées dans la base canonique, puis, à l'aide des relations trouvées (colonnes nulles), éliminer certains vecteurs de la famille génératrice de départ pour obtenir une famille libre.
- Ex. 10 : a) calculer le rang des familles de vecteurs correspondants ; b) montrer qu'on ne peut pas avoir $\dim F \cap G = 2$.