TD n° 3: Matrices et Systèmes linéaires (1)

Exercice 1

On pose
$$A = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 3 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 0 & -4 \\ 1 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$.
Vérifier que $(AB)C = A(BC)$ et $AB + B = (A + I_3)B$. A-t-on $AB = BA$?

Exercice 2

- 1. Soit $A=\begin{pmatrix}2&-2\\1&3\end{pmatrix}$. Déterminer deux matrices, S symétrique et T antisymétrique, telles que : A=S+T.
- 2. Démontrer que toute matrice de $\mathcal{M}_n(\mathbb{R})$ peut s'écrire, de manière unique, sous la forme S+T avec S symétrique et T antisymétrique.

Exercice 3

Pour
$$a \in \mathbb{R}$$
, on pose : $M(a) = \begin{pmatrix} 1 & 0 & -a \\ a & 1 & -\frac{a^2}{2} \\ 0 & 0 & 1 \end{pmatrix}$ et $E = \{M(a) \mid a \in \mathbb{R}\}.$

- a) Montrer que E est stable par la multiplication des matrices.
- b) En déduire, pour tout $A \in E$, l'expression de $A^n \quad (n \in \mathbb{N})$.
- c) Soit $A \in E$, déterminer $B \in E$ telle que : $AB = BA = I_3$. Conclusion?

Exercice 4

- a) Soit J la matrice $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ et I la matrice unité d'ordre 4. Calculer J^2 .
- b) Montrer qu'il existe 2 matrices B et C telles que : $\begin{cases} B+C=I\\ B-C=J \end{cases}$. Calculer $B^2,\ C^2,\ BC,\ CB$.

Exercice 5

Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$, on dit que A est nilpotente s'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$.

- 1) Soit $(a,b,c) \in \mathbb{R}^3$ et $A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$. Montrer que A est nilpotente.
- 2) a) Une matrice inversible peut-elle être nilpotente?
 - b) Une matrice non inversible est-elle nilpotente? (on pourra envisager $M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

et calculer M^n pour $n \in \mathbb{N}$).

- 3) a) Si A et B sont nilpotentes, la somme A+B est-elle nilpotente? (on pourra envisager les matrices $A=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $B=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$).
- b) Soit A et B deux matrices nilpotentes telles que AB = BA. Montrer que la somme A + B est nilpotente.

Exercice 6

- a) Soit $D = \operatorname{diag}(d_1, \dots, d_n) = (d_{ij}) \in \mathcal{D}_n(\mathbb{R})$ telle que $i \neq j \Longrightarrow d_i \neq d_j$. Déterminer $\mathcal{C}(D) = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid MD = DM \}$.
- b) En déduire $\mathcal{N} = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \forall A \in \mathcal{M}_n(\mathbb{R}), AM = MA \}.$

Exercice 7

Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 2 & 0 & -1 \end{pmatrix}$$
.

- a) Déterminer le plus petit entier n tel qu'il existe des réels a_0, a_1, \ldots, a_n non tous nuls vérifiant : $a_0I_3 + a_1A + \cdots + a_nA^n = 0$.
- b) En déduire que A est inversible et la valeur de A^{-1} .

Exercice 8

- a) Soit $A = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$. Calculer $A^3 + A^2 5A + 3I_3$. En déduire que A est inversible et calculer A^{-1} .
- b) Soit $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Calculer B^2 et C = AB. C est-elle inversible? Si oui, calculer C^{-1} .

Indications pour les exercices du TD n° 3

Ex. 1: faire les produits.

Ex. 2 : 1. chercher avec des coefficients indéterminés ; 2. raisonner par analyse-synthèse pour trouver la décomposition puis vérifier qu'elle convient.

Ex. 3 : a) vérifier que $M(a) \times \dot{M}(b) \in E$; b) récurrence en utilisant b) ; c) remarquer que $M(0) = I_3$ et utiliser les résultats du a).

Ex. 4:a) ok; b) résoudre le système d'inconnues B et C sans introduire les coefficients des matrices.

Ex. 5 : 1) calculer A^2 et A^3 ; 2)a) A^p est inversible pour tout p donc... ; 2)b) ok ; 3)a) utiliser l'indication et 2)a) ; 3)b) binôme de Newton.

Ex. 6 : a) utiliser la formule du produit et $d_{ij}=0$ si $i\neq j$; b) utiliser a), pour montrer que M est diagonale, puis scalaire en utilisant $A=(a_{ij})$ telle que $a_{ij}=0$ si $j\geqslant 2$, $a_{11}=0$ et $a_{i1}=1$ si $i\geqslant 2$.

Ex. 7 : a) montrer que n=3 en montrant qu'il n'existe pas de relation du type voulu pour n=0,1,2 ; b) à l'aide de a), trouver une relation du type $AB=BA=I_3$.

Ex. 8 : a) trouver une relation du type $AB=BA=I_3$; b) montrer que B est inversible puis C comme produit et calculer C^{-1} comme inverse d'un produit.