TD n° 2 : Récurrence - Sommes

Exercice 1

Démontrer par récurrence les résultats suivants :

a)
$$\forall n \in \mathbb{N}^*, \ n! \geqslant 2^{n-1}.$$

b)
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^{n} (2k-1) = n^2.$$

c)
$$\forall n \in \mathbb{N}^*, \ \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^n \frac{1}{n+k}.$$

Exercice 2

Pour $n \in \mathbb{N}^*$, calculer de deux façons différentes $S_n = \sum_{k=1}^n \left[(k+1)^2 - k^2 \right]$ et retrouver la

formule donnant
$$S'_n = \sum_{k=1}^n k$$
.

Exercice 3

- a) Déterminer deux réels a et b tels que : $\forall x \in \mathbb{R} \setminus \{-1, 0\}, \ \frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}$.
- b) En déduire la valeur de la somme $\sum_{k=1}^{n} \frac{1}{k(k+1)}$ en fonction de n, pour $n \in \mathbb{N}^*$.

Exercice 4

Soit $x \in \mathbb{R} \setminus \{1\}$ et $n \in \mathbb{N}^*$, on pose : $S_n(x) = \sum_{k=1}^n kx^k$.

- a) Montrer, par récurrence, que : $S_n(x) = \frac{nx^{n+2} (n+1)x^{n+1} + x}{(x-1)^2}$.
- b) Retrouver ce résultat en exprimant de deux manières différentes $S_{n+1}(x)$ à l'aide de $S_n(x)$.
- c) En écrivant $kx^k = \sum_{i=1}^k x^k$, retrouver le résultat du a).

Exercice 5

- a) Démontrer que : $\forall n \in \mathbb{N}^*, \ \forall p \in [1, n], \ \binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1} = \frac{n(n-1)}{p(p-1)} \binom{n-2}{p-2}$ si $p \geqslant 2$.
- b) Démontrer que : $\forall n \in \mathbb{N} \setminus \{0,1\}, \ \forall p \in [1,n-1], \ \binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}.$
- c) Démontrer que : $\forall n \in \mathbb{N}, \ n \geqslant 2, \ \binom{2}{2} + \binom{3}{2} + \dots + \binom{n}{2} = \binom{n+1}{3}.$

Exercice 6

Simplifier les expressions suivantes : $S = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k}$ et $T = \sum_{k=0}^{p} \binom{n}{k} \binom{n-k}{p-k}$ pour $(n,p) \in \mathbb{N}^2$ tel que $p \leq n$

Exercice 7

Calculer
$$\sum_{1 \le j \le i \le n} {j \choose i}$$
 et $\sum_{1 \le i \le j \le n} {j \choose i}$.

Exercice 8

Soit
$$n \in \mathbb{N}^*$$
, calcular $\prod_{k=1}^n 2^{\frac{k}{n}}$.

Indications pour les exercices du TD n° 2

- ex. 1 : a) poser l'H.R. puis multiplier par n+1 et soustraire 2^n ; b) ajouter 2n+1 de chaque côté; c) découper la somme obtenue au rang n+1 pour faire apparaître la somme au rang n puis isoler le 1er terme de celle-ci et conclure avec le changement d'indice k'=k-1.
- ex. 2 : reconnaître un télescopage ou calculer en développant l'expression, puis égaler les deux résultats.
- ex. 3 : a) réduire la fraction de droite et identifier les numérateurs ; b) reconnaître une somme télescopique grâce à a).
- ex. 4 : a) poser l'H.R. et ajouter $(n+1)x^{n+1}$ puis réduire la fraction ; b) séparer le 1er terme de $S_{n+1}(x)$, mettre x en facteur puis changer d'indice et couper la somme obtenue en deux, enfin égaler avec la somme obtenue en séparant le dernier terme de $S_{n+1}(x)$; c) écrire $S_n(x)$ comme une somme double et utiliser la propriété du cours.
- ex. 5 : a) partir du membre de droite et utiliser les factorielles.
 - b) idem en réduisant les fractions au même dénominateur.
 - c) récurrence sur n.
- ex. 6: pour S, utiliser le binôme et pour T, transformer d'abord le produit des coefficients du binôme en revenant aux factorielles.
- ex. 7 : pour la seconde somme, sommer sur i puis sur j.
- ex. 8 : additionner les puissances de 2.

Indications pour les exercices du TD n° 2

- ex. 1: a) poser l'H.R. puis multiplier par n+1 et soustraire 2^n ; b) ajouter 2n+1 de chaque côté; c) découper la somme obtenue au rang n+1 pour faire apparaître la somme au rang n puis isoler le 1er terme de celle-ci et conclure avec le changement d'indice k'=k-1.
- ex. 2 : reconnaître un télescopage ou calculer en développant l'expression, puis égaler les deux résultats.
- ex. 3 : a) réduire la fraction de droite et identifier les numérateurs ; b) reconnaître une somme télescopique grâce à a).
- ex. 4 : a) poser l'H.R. et ajouter $(n+1)x^{n+1}$ puis réduire la fraction ; b) séparer le 1er terme de $S_{n+1}(x)$, mettre x en facteur puis changer d'indice et couper la somme obtenue en deux, enfin égaler avec la somme obtenue en séparant le dernier terme de $S_{n+1}(x)$; c) écrire $S_n(x)$ comme une somme double et utiliser la propriété du cours.
- ex. 5 : a) partir du membre de droite et utiliser les factorielles.
 - b) idem en réduisant les fractions au même dénominateur.
 - c) récurrence sur n.
- ex. 6: pour S, utiliser le binôme et pour T, transformer d'abord le produit des coefficients du binôme en revenant aux factorielles.
- ex. 7 : pour la seconde somme, sommer sur i puis sur j.
- ex. 8 : additionner les puissances de 2.