TD n° 1: Ensembles et Applications

Exercice 1

Ecrire les phrases suivantes à l'aide de quantificateurs, puis leur contraposée (pour 2.) et leur négation:

- 1. Aucun entier naturel n'est supérieur à tous les autres.
- 2. Si un nombre réel positif est inférieur ou égal à 1, il est inférieur ou égal à son carré.

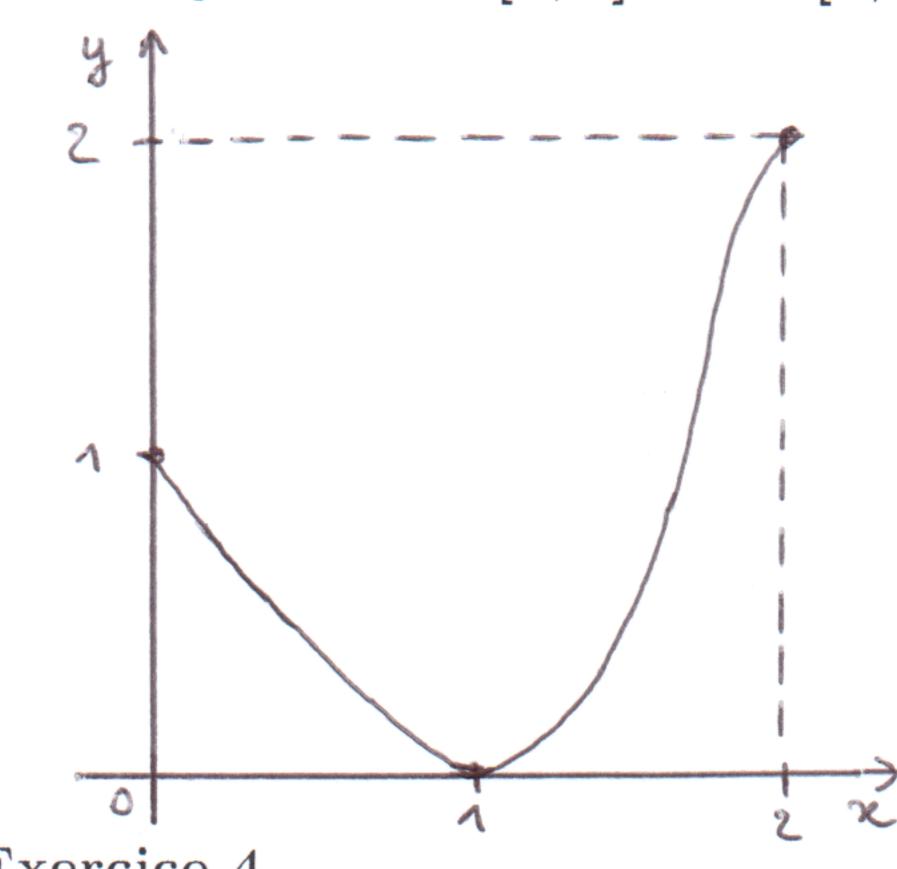
Exercice 2

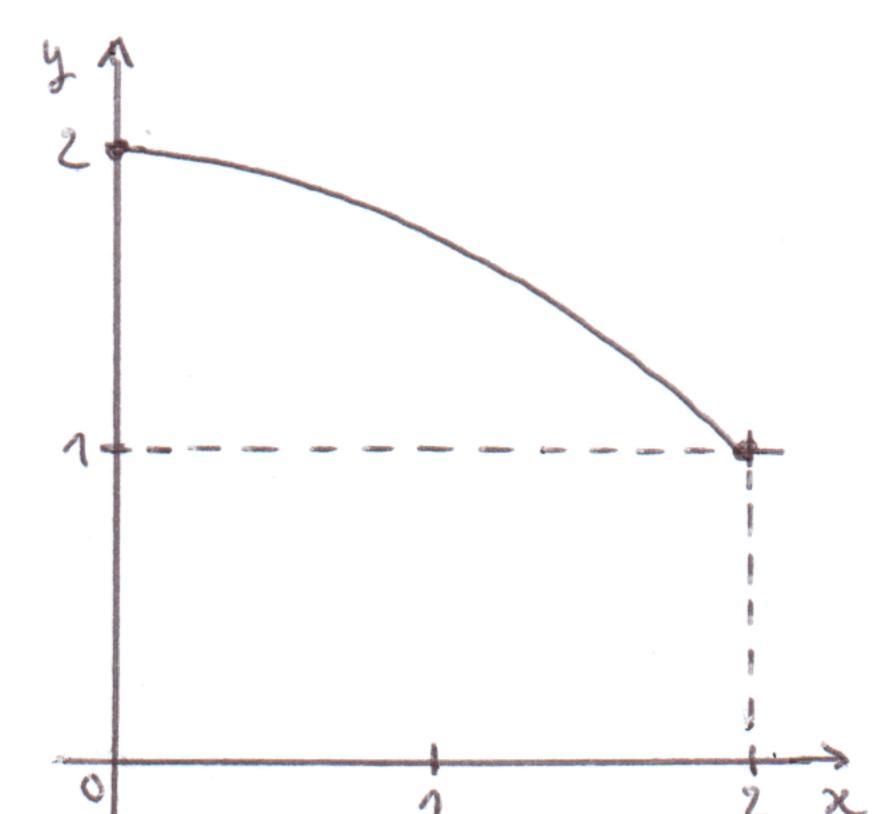
Soit E un ensemble et A, B, C trois parties de E.

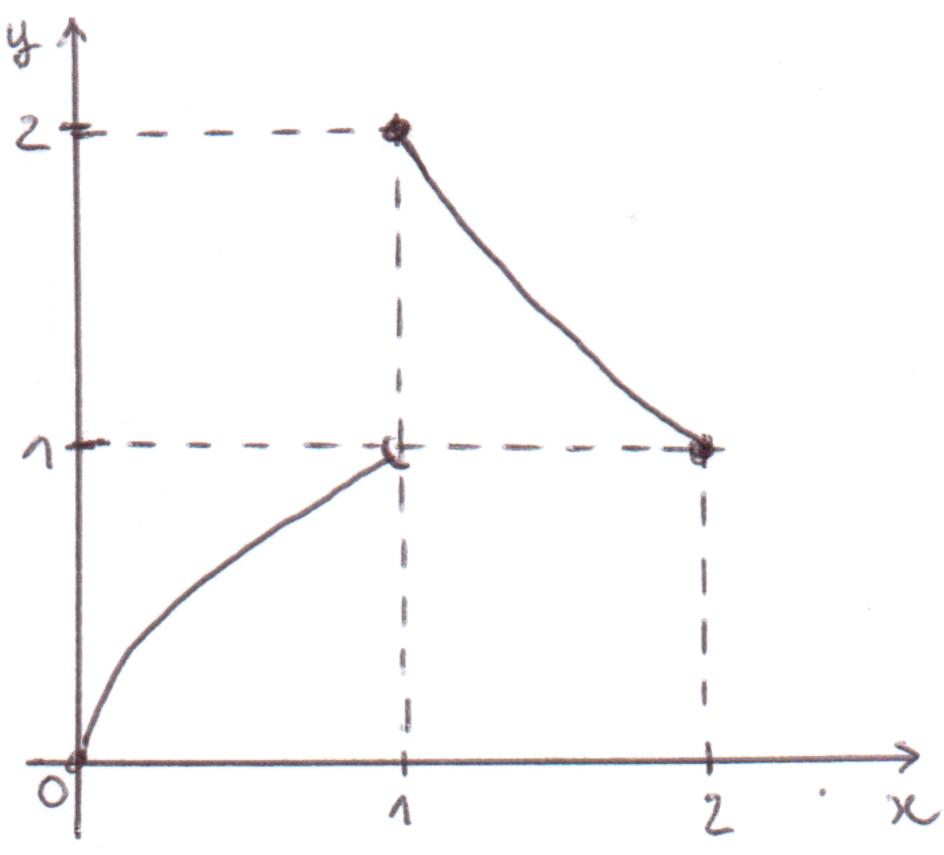
- 1. Que peut-on dire de A et B si $A \cup B = A \cap B$?
- 2. Montrer que : $A \cup B = A \cap C \Longrightarrow B \subset A \subset C$.
- 3. Montrer que : $(A \setminus B) \cup (B \setminus A) \subset \overline{A \cap B}$. A-t-on l'égalité?

Exercice 3

Dire, dans chacun des cas, si le graphe peut être celui d'une application injective, surjective, bijective de [0,2] dans [0,2].







Exercice 4

Soit $f \in \mathcal{A}(\mathbb{R}, \mathbb{R})$.

- 1. Montrer que si f est strictement monotone, alors f est injective. La réciproque est-elle vraie?
 - 2. En déduire que l'équation $x + e^x = 1$ a une seule solution et la déterminer.
 - 3. La propriété du 1. reste-t-elle vraie si on remplace injective par surjective?

Exercice 5

On considère l'application $f:]1, +\infty[\longrightarrow]3, +\infty[$.

$$x \longmapsto \frac{3x+1}{x-1}$$

- 1. Montrer que f est injective, puis surjective. Que peut-on en conclure?
- 2. Déterminer f^{-1} .

Exercice 6

Soit f l'application définie sur $\mathbb{R} \setminus \{-1\}$ par : $f(x) = \frac{1-x}{1-x}$.

- 1. Montrer que f est une bijection de $\mathbb{R} \setminus \{-1\}$ sur $\mathbb{R} \setminus \{-1\}$.
- 2. Déterminer $f \circ f$ et retrouver le résultat précédent.

Exercice 7

Soient E, F et G trois ensembles, $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications.

- 1. Montrer que si $g \circ f$ est injective alors f est injective.
- 2. Montrer que si $g \circ f$ est injective et f surjective, alors g est injective.
- 3. Montrer que si $g \circ f$ est surjective alors g est surjective.
- 4. Montrer que si $g \circ f$ est surjective et g injective, alors f est surjective.

Indications pour les exercices du TD n° 1

- ex. 1 : la négation de $P \Longrightarrow Q$ est "P et \bar{Q} ".
- ex. 2 : 1. vérifier que $A \subset B$ et $B \subset A$; 2. raisonner sur un élément de B, puis de A ; 3. raisonner sur un élément en faisant deux cas.
- ex. 3 : regarder l'ensemble des images et le nombre d'antécédents de chaque image.
- ex. 4 : 1. vérifier la définition puis chercher un contre-ex. ; 2. appliquer le 1. en trouvant une solution évidente ; 3. utiliser ex. 3 ou chercher des contre-exemples.
- ex. 5 : 1. résoudre f(x) = f(x'), puis f(x) = y ; 2. utiliser 1.
- ex. 6 : 1. vérifier que $f(\mathbb{R} \setminus \{-1\}) \subset \mathbb{R} \setminus \{-1\}$ puis que tout réel $y \neq -1$ a un antécédent unique. ; 2. utiliser le th. de caractérisation des bijections.
- ex. 7 : 1. appliquer la définition et composer par g ; 2. introduire des antécédents par f des éléments considérés ; 3. introduire un antécédent par $g \circ f$; 4. introduire un antécédent par $g \circ f$ de l'image par g de l'élément considéré.

Indications pour les exercices du TD n° 1

- ex. 1 : la négation de $P \Longrightarrow Q$ est " $P \in Q$ ".
- ex. 2 : 1. vérifier que $A \subset B$ et $B \subset A$; 2. raisonner sur un élément de B, puis de A ; 3. raisonner sur un élément en faisant deux cas.
- ex. 3 : regarder l'ensemble des images et le nombre d'antécédents de chaque image.
- ex. 4 : 1. vérifier la définition puis chercher un contre-ex. ; 2. appliquer le 1. en trouvant une solution évidente ; 3. utiliser ex. 3 ou chercher des contre-exemples.
- ex. 5 : 1. résoudre f(x) = f(x'), puis f(x) = y; 2. utiliser 1.
- ex. 6 : 1. vérifier que $f(\mathbb{R} \setminus \{-1\}) \subset \mathbb{R} \setminus \{-1\}$ puis que tout réel $y \neq -1$ a un antécédent unique. ; 2. utiliser le th. de caractérisation des bijections.
- ex. 7 : 1. appliquer la définition et composer par g ; 2. introduire des antécédents par f des éléments considérés ; 3. introduire un antécédent par $g \circ f$; 4. introduire un antécédent par $g \circ f$ de l'image par g de l'élément considéré.