L. Sup. B/L Septembre 2025

Soutien n° 1 : Ensembles - Applications - Récurrence - Sommes

Exercice 1

- 1. Compléter chaque phrase avec "il faut", "il suffit" ou "il faut et il suffit".
 - a) Soit $n \in \mathbb{Z}$. Pour qu'il existe $m \in \mathbb{Z}$ tel que $m^2 = n$, il que n soit positif ou nul.
 - b) Soit $x \in \mathbb{R}$. Pour qu'il existe $t \in \mathbb{R}$ tel que $t^2 = x$, il que x soit positif ou nul.
- 2. Soient A, B, C trois parties de l'ensemble E. Montrer que : $A \subset B \iff A = A \cap B \iff A \cup B = B$.
- 3. Vrai ou Faux? Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$. Si $f \circ f \circ f = \mathrm{Id}_{\mathbb{R}}$, alors f est bijective. Si c'est vrai, que vaut f^{-1} ?
- 4. Soient $f: \mathbb{R} \setminus \{-1\} \longrightarrow \mathbb{R}$ telle que $f(x) = \frac{1}{x+1}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ telle que $g(x) = \exp(x)$. Peut-on écrire $f \circ g$? $g \circ f$? Si oui, décrire ces applications.
- 5. Écrire toutes les applications de $E = \{1; 2\}$ dans $F = \{a; b\}$ (avec $a \neq b$) et, pour chacune, indiquer si elle est injective, surjective, bijective.

Exercice 2

- 1. Démontrer par récurrence l'inégalité de Bernoulli : $\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ x \geqslant -1 \Longrightarrow (1+x)^n \geqslant 1+nx$.
- 2. Démontrer par récurrence que : $\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^2 \leqslant n^3$.
- 3. Montrer par récurrence que : $\forall n \in \mathbb{N}^*, \ \left(\sum_{k=1}^n k\right)^2 = \sum_{k=1}^n k^3.$

Exercice 3

Soit (u_n) la suite définie par ses deux premiers termes $u_0=4$ et $u_1=8$ et par la relation : $\forall n \in \mathbb{N}, \ u_{n+2}=4u_{n+1}+5u_n$.

Montrer, à l'aide d'une récurrence double, que pour tout entier $n \in \mathbb{N}$, on a : $u_n = 2 \times (-1)^n + 2 \times 5^n$.

Exercice 4

Calculer les sommes suivantes :
$$S_1 = \sum_{k=0}^{n} (2k-1)$$
; $S_2 = \sum_{k=0}^{n} (n-k)$ (changer d'indice); $S_3 = \sum_{k=0}^{n} 2^k$;

$$S_4 = \sum_{k=1}^{n+1} \frac{3^{k-1}}{4^k} , S_5 = \sum_{k=1}^n \ln\left(1 + \frac{1}{k}\right); S_6 = \sum_{k=1}^n (nk-1); S_7 = \sum_{k=3}^{n+1} k2^{k-1} \quad \text{où } n \in \mathbb{N}.$$

Exercice 5

1. Soit
$$n \in \mathbb{N}^*$$
; calculer $\sum_{k=1}^n [(k+1)^3 - k^3]$ de deux manières différentes et en déduire $S_n = \sum_{k=1}^n k^2$.

2. Calculer
$$T_n = \sum_{i=1}^n \sum_{j=1}^n (i+j)$$
 et $U_n = \sum_{i=1}^n \sum_{j=i}^n (i+j)$.

Exercice 6

1. Soit
$$n \in \mathbb{N}^*$$
; calculer $T_n = \sum_{k=0}^n \sum_{j=0}^k \binom{n}{k} \binom{k}{j} a^j b^{k-j}$ où $(a,b) \in \mathbb{R}^2$.

2. Soit
$$n \in \mathbb{N}^*$$
; calculer $S_n = \sum_{i=1}^{2n} 2^{2i+1} {2n \choose i-1}$.