L. Sup. B/L Mai 2025

Soutien n° 12 : Dérivation

Exercice 1

Étudier la dérivabilité en 0 des fonctions suivantes : $f: x \mapsto |\sin(x)|, g: x \mapsto x|\sin(x)|$ et $h: x \longmapsto \sqrt{|\sin(x)|}$.

Exercice 2

Étudier la dérivabilité des fonctions suivantes et calculer leur dérivée là où elle existe : a)
$$f(x) = (x^3 + 2x^2 + 1)^5$$
; b) $g(x) = x \ln(1 + x^2)$; c) $h(x) = \tan(2x) + \frac{1}{\tan(x)}$;

d)
$$i(x) = \sqrt{1 + \ln(x)}$$
; e) $j(x) = e^{1 - \sqrt{x}}$; f) $k(x) = (\sqrt{x} + 1)^{\ln(x)}$.

Exercice 3

Soit f la fonction définie sur [0,1] par : $f(x) = x\sqrt{1-x^2}$.

- a) Étudier la dérivabilité de f.
- b) Montrer que f réalise une bijection de $\left[0,\frac{1}{\sqrt{2}}\right]$ sur un intervalle I à préciser.
- c) Étudier la dérivabilité de f^{-1} sur I.

Exercice 4

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^3 + x$.

- 1. Montrer que f admet une fonction réciproque q.
- 2. Montrer que g est dérivable sur \mathbb{R} et exprimer g' en fonction de g.
- 3. Montrer que q est de classe C^{∞} sur \mathbb{R} .

Exercice 5

Soit $f: x \longmapsto \sqrt{1+|x|}$. f est-elle continue sur \mathbb{R} ? dérivable sur \mathbb{R} ? de classe C^1 sur \mathbb{R} ?

Exercice 6

Soit f la fonction définie par : f(x) = 1 + x si $x \ge 0$; $f(x) = e^x$ si x < 0. Démontrer que f est de classe C^1 sur \mathbb{R} mais n'est pas de classe C^2 sur \mathbb{R} .

Exercice 7

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$x \longmapsto \begin{cases} 0 & \text{si } x \leqslant 2\\ (x-2)^2 & \text{si } x > 2. \end{cases}$$

Quel est le plus grand entier k tel que f soit de classe C^k sur \mathbb{R} ?

Exercice 8

Montrer, à l'aide des A. F., que : $\forall (x,y) \in [3,+\infty[^2,\ \left|\sqrt{6+x}-\sqrt{6+y}\right|\leqslant \frac{1}{6}|x-y|.$

Exercice 9

On rappelle qu'une fonction $f: I \longrightarrow \mathbb{R}$ est dite *lipschitzienne* s'il existe un réel positif K tel que :

$$\forall (x,y) \in I^2, |f(x) - f(y)| \leqslant K|x - y|$$

- 1. Montrer qu'une fonction dérivable est lipschitzienne si, et seulement si, sa dérivée est bornée.
- 2. Montrer que si f et g sont lipschitziennes, alors f + g est lipschitzienne.
- 3. Montrer que si f et q sont lipschitziennes, alors $f \circ q$ est lipschitzienne.
- 4. Montrer que le produit de deux fonctions lipschitziennes bornées est une fonction lipschitzienne.
- 5. Montrer que la fonction racine carrée n'est pas lipschitzienne sur $[0, +\infty[$.

Exercice 10

Étude de la fonction $f: x \longmapsto |x \ln |x||$: domaine, parité, limites, variations, branches infinies.