Soutien n° 10: Fonctions usuelles

Exercice 1

- a) Résoudre dans \mathbb{R} les équations :
 - (1) $\sqrt{|x^2-1|} = x-5$
 - (2) $2\ln(x-4) = \ln(x) 2\ln(2)$
 - (3) $|\ln(x) + 2| + 2 + 2\ln(x) = \ln^2(x)$ (4) $4e^{-5x} + 3e^{-3x} e^{-x} = 0$
- b) Résoudre dans \mathbb{R}^2 le système : (S) $\begin{cases} 8^x = 10y \\ 2^x = 5y \end{cases}$
- c) Résoudre dans \mathbb{R} : $\ln|x+1| \ln|2x+1| \leq \ln(2)$.
- d) Montrer que : $\ln(x + \sqrt{1 + x^2}) + \ln(\sqrt{1 + x^2} x) = 0$ en précisant sur quelle partie \mathcal{D} de \mathbb{R} l'égalité est vraie.

Exercice 2

Calculer, si elles existent, les limites suivantes :

a)
$$\lim_{x \to 0} \frac{\ln(1+2x)}{3x}$$

b)
$$\lim_{x \to 0} \frac{e^{x^2} - 1}{x}$$

a)
$$\lim_{x \to 0} \frac{\ln(1+2x)}{3x}$$
 b) $\lim_{x \to 0} \frac{e^{x^2} - 1}{x}$ c) $\lim_{x \to +\infty} x \cdot \frac{x^{1/x} - 1}{\ln(x)}$

d)
$$\lim_{x\to 0} x^x$$

e)
$$\lim_{x \to +\infty} (x^3 e^{-x} - x)$$

f)
$$\lim_{x \to 0} \frac{\ln(x) + x}{\ln(x) + 1}$$

g)
$$\lim_{x \to \pm \infty} \frac{e^x + 1}{e^{2x} - 1}$$

d)
$$\lim_{x\to 0} x^x$$
 e) $\lim_{x\to \pm \infty} (x^3 e^{-x} - x)$ f) $\lim_{x\to 0} \frac{\ln(x) + x}{\ln(x) + 1}$ g) $\lim_{x\to \pm \infty} \frac{e^x + 1}{e^{2x} - 1}$ h) $\lim_{x\to 0^+} \tan(x) \ln(\sin(x))$.

Parmi les égalités suivantes, lesquelles sont exactes?

$$\left(a^{b}\right)^{c}=a^{bc}\;;\;a^{b}\,a^{c}=a^{bc}\;;\;a^{2b}=\left(a^{b}\right)^{2}\;;\;\left(ab\right)^{c}=a^{c/2}b^{c/2}\;;\;\left(a^{b}\right)^{c}=a^{\left(b^{c}\right)}\;;\;\left(a^{b}\right)^{c}=\left(a^{c}\right)^{b}.$$

Exercice 4

Résoudre dans \mathbb{R} les équations suivantes :

- $a) \sin(3x) \sin(2x) = 0$
- b) $\cos\left(x + \frac{\pi}{4}\right) = \sin(x)$
- c) tan(x) + tan(2x) = 0

Exercice 5

Calculer les valeurs exactes de $\cos\left(\frac{\pi}{8}\right)$, $\cos\left(\frac{\pi}{12}\right)$, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{8}\right)$.

Exercice 6

Simplifier les expressions $\cos(4\operatorname{Arc}\tan(x))$ et $\tan(2\operatorname{Arc}\tan(x))$ après avoir précisé sur quel(s) ensemble(s) elles ont un sens.

Exercice 7

- a) Montrer que, pour tout $x \in \mathbb{R}$, on a : $\operatorname{Arc} \tan(1+x) \operatorname{Arc} \tan(x) = \operatorname{Arc} \tan\left(\frac{1}{1+x+x^2}\right)$.
- b) En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ de terme général : $S_n = \sum_{k=0}^{\infty} \operatorname{Arc} \tan \left(\frac{1}{1+k+k^2}\right)$ est convergente et calculer sa limite.

Exercice 8

Montrer que : $\forall x \in \mathbb{R}^{+*}$, $\operatorname{Arc} \tan(x) > \frac{x}{1 \perp x^2}$

Exercice 9

Démontrer que : $\forall x \in [0,1], \ x \geqslant \operatorname{Arc} \tan(x) \geqslant \frac{1}{2} \operatorname{Arc} \tan(2x).$