L. Sup. B/L Le 22 mai 2024

CONCOURS BLANC N° 2

Épreuve de mathématiques; durée : 4 heures

Exercice: (Les deux questions sont indépendantes)

- 1. Soit $f: x \mapsto \frac{x^2 + e^x}{x+1}$. On note C_f sa courbe représentative dans un repère orthonormé du plan.
 - a) Déterminer le domaine de définition de f.
- b) Déterminer les limites de f aux bornes de son domaine de définition et préciser les asymptotes horizontales ou verticales éventuelles de C_f .
 - c) i) Déterminer $\lim_{x\to -\infty} \frac{f(x)}{x}$. On notera a le réel obtenu.
 - ii) Déterminer $\lim_{x\to -\infty} (f(x) ax)$. On notera b le réel obtenu.
 - iii) En déduire que C_f admet une asymptote oblique en $-\infty$.
- 2. Soient α et β deux réels. On considère les suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ définies par les premiers termes $x_0\in\mathbb{R},\ y_0\in\mathbb{R}$, et par les relations $x_{n+1}=\frac{y_n+\alpha}{2}$ et $y_{n+1}=\frac{x_n+\beta}{2}$, pour tout $n\in\mathbb{N}$.

On définit ensuite pour tout entier n, $v_n = x_n - \frac{2\alpha + \beta}{3}$ et $w_n = y_n - \frac{\alpha + 2\beta}{3}$.

- a) Montrer que, pour tout $n \in \mathbb{N}$, on a $v_{n+1} = \frac{1}{2}w_n$ et $w_{n+1} = \frac{1}{2}v_n$.
- b) Montrer que, pour tout $n \in \mathbb{N}$, on a $v_n^2 + w_n^2 = \frac{v_0^2 + w_0^2}{4^n}$.
- c) En déduire que $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent et déterminer leurs limites.
- d) Montrer que $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ convergent et déterminer leurs limites.

$\underline{\text{Problème 1}}$:

On considère la fonction f définie sur \mathbb{R}^+ par : $\forall x \in \mathbb{R}^{+*}, \ f(x) = x^2 - x \ln(x) - 1$ et f(0) = -1, ainsi que la fonction φ définie sur \mathbb{R}^{+*} par : $\forall x \in \mathbb{R}^{+*}, \ \varphi(x) = \frac{2}{x} + \ln(x)$.

Partie I - Étude de f

- 1. Montrer que f est continue sur \mathbb{R}^+ .
- 2. Montrer que f est dérivable sur \mathbb{R}^{+*} . Étudier la dérivabilité de la fonction f en 0. En donner une interprétation graphique.
- 3. Déterminer les variations de f' et f, puis dresser le tableau de variation complet de f (avec les limites).
- 4. Montrer que f réalise une bijection de \mathbb{R}^+ sur un intervalle J que l'on précisera. On note $g: J \longrightarrow \mathbb{R}^+$ la fonction réciproque associée.
- 5. a) Dresser le tableau de variation complet de g (avec les limites).
 - b) Justifier que g est dérivable sur $J \setminus \{-1\}$.
- c) Montrer que g est aussi dérivable en -1, en étudiant un taux d'accroissement. On précisera g'(-1).

Partie II - Étude d'une suite implicite

- 6. Justifier que pour tout entier naturel k, il existe un unique réel x_k positif tel que $f(x_k) = k$.
- 7. Exprimer x_k à l'aide de g puis justifier que la suite (x_k) est croissante et déterminer sa limite.
- 8. Donner la valeur de x_0 et justifier que $x_1 \in \left[\frac{3}{2}, 2\right]$. On pourra utiliser : $\ln\left(\frac{3}{2}\right) > \frac{1}{4}$.

Partie III - Étude d'une suite récurrente

On définit la suite (u_n) par : $u_0 = \frac{3}{2}$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \varphi(u_n)$.

9. Étudier les variations de φ sur \mathbb{R}^{+*} .

- 10. Démontrer que, pour tout $n \in \mathbb{N}, \ \frac{3}{2} \leqslant u_n \leqslant 2.$
- 11. En étudiant les variations de φ' , montrer que : $\forall x \in \left[\frac{3}{2}; 2\right], \ |\varphi'(x)| \leqslant \frac{2}{9}$
- 12. Montrer que les équations $x = \varphi(x)$ et f(x) = 1, d'inconnue x > 0, sont équivalentes. En déduire les solutions de l'équation $x = \varphi(x)$.
- 13. À l'aide de l'inégalité des accroissements finis, montrer que : $\forall n \in \mathbb{N}, \ |u_{n+1} x_1| \leqslant \frac{2}{9}|u_n x_1|$.
- 14. En déduire que, pour tout $n \in \mathbb{N}$, $|u_n x_1| \leq \left(\frac{2}{9}\right)^n$. Déterminer alors la limite de la suite (u_n) .
- 15. On cherche une valeur approchée à 10^{-3} près de x_1 . Déterminer une valeur de n à partir de laquelle u_n est une valeur approchée de x_1 à 10^{-3} près (on ne demande pas une valeur numérique).

Problème 2:

Soit s l'endomorphisme de \mathbb{R}^3 de matrice $S = \frac{1}{3} \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$ dans la base canonique

- $\mathcal{B} = (e_1, e_2, e_3) \text{ de } \mathbb{R}^3.$
- 1. Soient $e'_1 = (1, 1, 1), e'_2 = (1, -1, 0)$ et $e'_3 = (1, 1, -2)$.
 - a) Montrer que $\mathcal{B}' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 .
 - b) Déterminer la matrice S' de s dans la base \mathcal{B}' .
- c) Calculer $(S')^n$ pour $n \in \mathbb{N}$ et donner une méthode de calcul de S^n (on ne demande pas d'effectuer les calculs).
- 2. a) La famille (I_3, S) est-elle libre dans $\mathcal{M}_3(\mathbb{R})$?
- b) Montrer que S^2 peut s'exprimer sous forme d'une combinaison linéaire de I_3 et S. En déduire que s est bijectif et déterminer S^{-1} .
- c) En déduire que, pour tout $n \in \mathbb{N}$, il existe un unique couple (a_n, b_n) de réels tel que $S^n = a_n I_3 + b_n S$.
 - d) Donner les valeurs de a_0, b_0, a_1, b_1 et exprimer, pour $n \in \mathbb{N}$, a_{n+1} et b_{n+1} en fonction de a_n et b_n .
 - e) Montrer que la suite $(a_n + b_n)_{n \in \mathbb{N}}$ est constante, puis que la suite $(b_n + 1)_{n \in \mathbb{N}}$ est géométrique.
 - f) En déduire l'expression de a_n et b_n pour tout $n \in \mathbb{N}$.
- 3. Soit $B = S 2I_3$.
 - a) Calculer B^n pour $n \in \mathbb{N}$.
 - b) En déduire l'expression de S^n en fonction de I_3 et B pour $n \in \mathbb{N}$.
 - c) Comparer avec le résultat de la question 2.

Partie II

Soit f l'endomorphisme de \mathbb{R}^3 de matrice $A=\frac{1}{3}\begin{pmatrix} -1 & -1 & 5 \\ 5 & -1 & -1 \\ -1 & 5 & -1 \end{pmatrix}$ dans la base \mathcal{B} . On pose $u=f\circ s^{-1}$ et on note U la matrice de u dans la base \mathcal{B} .

- 1. Calculer U et vérifier que $u \circ s = s \circ u = f$.
- 2. Soit $\mathcal{B}'' = (e_1'', e_2'', e_3'')$ la base de \mathbb{R}^3 telle que $e_1'' = \frac{1}{\sqrt{3}} e_1', \ e_2'' = \frac{1}{\sqrt{2}} e_2'$ et $e_3'' = \frac{1}{\sqrt{6}} e_3'$.
 - a) Écrire la matrice de passage P de \mathcal{B} à \mathcal{B}'' et vérifier que sa transposée est son inverse.
 - b) Écrire la matrice U' de u dans la base \mathcal{B}'' .
- 3. a) Exprimer la matrice de s dans la base \mathcal{B}'' en fonction de S'.
 - b) En déduire la matrice de f dans la base \mathfrak{B}'' .
- 4. a) Quel est l'ensemble des vecteurs $x \in \mathbb{R}^3$ tels que f(x) = x?
 - b) Soit $P = \text{Vect}\{e_2'', e_3''\}$, montrer que f(P) = P.