L. Sup. B/L Le 5 avril 2024

$$\frac{\mathbf{DS} \ \mathbf{n}^{\circ} \mathbf{5}}{(dur\acute{e}e : 4 \ heures)}$$

(Les trois questions sont indépendantes) Exercice 1

1. Un lac compte 5000 carpes. Chaque année, 5% de l'effectif meurent, mais on en réintroduit 300. Ainsi on modélise l'évolution du nombre de carpes (en centaines) par la suite (u_n) vérifiant :

$$\begin{cases} u_0 = 50 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 0,95u_n + 3. \end{cases}$$

- a) Déterminer u_n en fonction de n pour tout $n \in \mathbb{N}$.
- b) Pour tout $n \in \mathbb{N}$, exprimer $u_{n+1} u_n$ en fonction de n. En déduire le sens de variation de la suite (u_n) et préciser sa limite.
- 2. Soit (v_n) la suite définie par : $\begin{cases} v_0 = 0, v_1 = 2 \\ \forall n \in \mathbb{N}, \ v_{n+2} = 4v_{n+1} 4v_n \end{cases}.$
 - a) Déterminer, pour tout $n \in \mathbb{N}$, l'expression de v_n en fonction de n.
 - b) À l'aide d'un télescopage, en déduire la valeur de $\sum^{N} n2^{n}$ pour $N \geqslant 2$.
- 3. Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \lfloor kx \rfloor$ et $T_n = \frac{1}{n^2} S_n$.
 - a) Montrer que : $\forall n \in \mathbb{N}, \ \frac{n(n+1)}{2}x n \leqslant S_n \leqslant \frac{n(n+1)}{2}x.$
 - b) En déduire la convergence et la limite de la suite $(T_n)_{n\in\mathbb{N}}$.

Exercice 2

Soit (u_n) et (v_n) les suites définies par $u_0 = 1, v_0 = 2$ et, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \frac{u_n + v_n}{2}$$
 et $v_{n+1} = \frac{u_{n+1} + v_n}{2}$

- 1. Déterminer $k \in]0,1[$ tel que : $\forall n \in \mathbb{N}, \ v_{n+1}-u_{n+1}=k(v_n-u_n).$
- 2. Montrer par récurrence que : $\forall n \in \mathbb{N}, \ v_n > u_n$.
- 3. a) Déterminer le sens de variation de (u_n) et de (v_n) .
 - b) Pour tout $n \in \mathbb{N}$, on pose $w_n = v_n u_n$. Déterminer l'expression de w_n en fonction de n.
 - c) Montrer que (u_n) et (v_n) convergent vers la même limite.
- 4. Pour tout $n \in \mathbb{N}$, on pose $s_n = \sum_{k=0}^{n} w_k$.
 - a) Déterminer, pour tout $n \in \mathbb{N}$, l'expression de s_n en fonction de n.
 - b) Montrer que pour tout $n \ge 1$, $w_n = \frac{u_n u_{n-1}}{2}$
- c) En déduire une relation simple entre les termes de (s_n) et de (u_n) puis une expression de u_n pour tout $n \in \mathbb{N}$.
- 5. Déterminer finalement $\lim_{n\to+\infty} u_n$ et $\lim_{n\to+\infty} v_n$.

Exercice 3 (Les cinq questions sont indépendantes)

- 1. Déterminer l'ensemble de définition des fonctions suivantes : a) $f: x \longmapsto \frac{1}{\ln(x) 1}$; b) $g: x \longmapsto \ln(e^x 1)$; c) $h: x \longmapsto \frac{1}{\ln(x + 1)}$.
- 2. Simplifier au maximum les expressions suivantes en précisant pour quelles valeurs de \boldsymbol{x} :

a)
$$A(x) = \frac{e^{x^2 + 2x}}{e^{(x+1)^2}}$$
; b) $B(x) = -\ln(2x) - \ln(x) - \ln\left(\frac{1}{x^2}\right)$; c) $C(x) = \sqrt{e^{2x}} \times e^{-x}$.

- 3. Résoudre les équations ou inéquations suivantes :
 - a) $(1 + \ln(x))^2 = 4$; b) $(\ln(x))^2 3\ln(x) + 2 = 0$; c) $\frac{1}{e^x + 1} < 2$; d) $\ln(10 x^2) > 0$;
 - e) tan(x) = sin(2x).
- 4. Calculer les limites suivantes : a) $\lim_{x \to +\infty} \frac{\sqrt{x}}{\left(\ln\left(\frac{1}{x}\right)\right)^4}$; b) $\lim_{x \to 0^+} x^{\sqrt{x}}$; c) $\lim_{x \to 0} \frac{e^{-x} 1}{\sqrt{1 + 3x} 1}$.
- 5. On définit la fonction $f: x \longmapsto -\operatorname{Arc} \tan(2x^2) \operatorname{Arc} \tan\left(\frac{x}{x+1}\right) + \operatorname{Arc} \tan\left(\frac{x-1}{x}\right)$.
 - a) Déterminer le domaine de définition \mathcal{D} de f et calculer ses limites aux bornes de \mathcal{D} .
- b) Calculer la dérivée de f et en déduire une expression simplifiée de f(x) [On rappelle la formule de dérivation : $(u \circ v)'(x) = u'(v(x)) \times v'(x)$].

Exercice 4

On considère la fonction f définie sur $[1, +\infty[$ par : $\forall x \ge 1, \ f(x) = \frac{x^2}{2x-1}$. On note \mathcal{C}_f sa courbe représentative dans un repère du plan.

- 1. Établir l'encadrement : $\forall x \ge 1, \ 1 \le f(x) \le \frac{x+1}{2}$.
- 2. a) Déterminer $\lim_{x\to +\infty} f(x)$, puis $\lim_{x\to +\infty} \frac{f(x)}{x}$, qu'on notera a.
 - b) Déterminer $\lim_{x\to +\infty} (f(x) ax)$, qu'on notera b.
- c) Montrer qu'il existe un réel c tel que : $\forall x \ge 1$, $f(x) ax b = \frac{c}{2x 1}$ et donner la valeur de c. Justifier alors que : $\forall x \ge 1$, $f(x) \ge \frac{2x + 1}{4}$.
 - d) En déduire $\lim_{x\to +\infty} [f(x) (ax+b)]$ et interpréter ce résultat concernant \mathcal{C}_f .
- 3. a) Étudier le sens de variation de f.
 - b) Tracer la courbe C_f et les droites d'équations y = ax + b et $y = \frac{x+1}{2}$ dans le même repère.

Exercice 5

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}\setminus\{1\}$ et, pour tout $n\in\mathbb{N},\ u_{n+1}=f(u_n)$ où f est la fonction définie par $f:x\longmapsto\frac{x^2+1}{x-1}$.

- 1. Vérifier que : $\forall x \in \mathbb{R} \setminus \{1\}$, $f(x) = x + 1 + \frac{2}{x 1}$, puis montrer que la dérivée de f sur $\mathbb{R} \setminus \{1\}$ est donnée par $f'(x) = \frac{x^2 2x 1}{(x 1)^2}$ et en déduire les variations de f, en précisant les limites aux bornes.
- 2. Représenter sommairement le graphe de f et de la droite d'équation y=x dans un repère orthonormé $(0,\vec{i},\vec{j})$ du plan (prendre 0,5 cm pour unité ou un demi "grand carreau").
- 3. Justifier que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie en montrant que si $u_0 > 1$, alors $\forall n \in \mathbb{N}, \ u_n$ existe et $u_n > 1$, et si $u_0 < 1$, alors $\forall n \in \mathbb{N}, \ u_n$ existe et $u_n < 1$.
- 4. En supposant que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$, déterminer ℓ .
- 5. On suppose que $u_0 > 1$. Étudier la monotonie et la convergence de la suite $(u_n)_{n \in \mathbb{N}}$. Déterminer sa limite éventuelle.
- 6. On suppose $u_0 \leq -1$. Montrer qu'alors $(u_n)_{n \in \mathbb{N}}$ est croissante et converge. Donner sa limite.
- 7. On suppose $0 < u_0 < 1$. Étudier la nature et déterminer la limite éventuelle de $(u_n)_{n \in \mathbb{N}}$.
- 8. On suppose $-1 < u_0 \le 0$. Montrer que : $\forall n \in \mathbb{N}, \ u_n \in [-1,0]$ et en déduire la monotonie, la nature et la limite de $(u_n)_{n \in \mathbb{N}}$.